Optical tweezers (OT), or optical traps, are a device for manipulating microscopic objects through a focused laser beam. They are used in various fields of physical and biophysical chemistry to identify the interactions between individual molecules and measure single-molecule forces. In this work, we describe the development of a homemade optical tweezers device based on a cost-effective IR diode laser, the hardware, and, in particular, the software controlling it. It allows us to control the instrument, calibrate it, and record and process the measured data. It includes the user interface design, peripherals control, recording, A/D conversion of the detector signals, evaluation of the calibration constants, and visualization of the results. Particular stress is put on the signal filtration from noise, where several methods were tested. The calibration experiments indicate a good sensitivity of the instrument that is thus ready to be used for various single-molecule measurements.