“…Extreme values of hierarchical metamaterial properties such as specific stiffness, toughness, strength, negative or complex Poisson’s ratio, zero or negative thermal expansion, phononic band gaps as well as impact energy absorption have been reported in hierarchical architectures across multiple length scales [9,10,11,12,13,14,15]. Sun et al [16] analytically studied the in-plane elastic moduli and thermal conductivity of a multifunctional hierarchical honeycomb (MHH), which is formed by replacing the solid cell walls of an original regular hexagonal honeycomb (ORHH) with three different isotropic honeycomb sub-structures possessing hexagonal, triangular or kagome lattices.…”