Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
New possibilities of Gramian computation, by means of canonical transformations into diagonal, controllable, and observable canonical forms, are shown. Using such a technique, the Gramian matrices can be represented as products of the Hadamard matrices of multipliers and the matrices of the transformed right-hand sides of Lyapunov equations. It is shown that these multiplier matrices are invariant under various canonical transformations of linear continuous systems. The modal Lyapunov equations for continuous SISO LTI systems in diagonal form are obtained, and their new solutions based on Hadamard decomposition are proposed. New algorithms for the element-by-element computation of Gramian matrices for stable, continuous MIMO LTI systems are developed. New algorithms for the computation of controllability Gramians in the form of Xiao matrices are developed for continuous SISO LTI systems, given by the equations of state in the controllable and observable canonical forms. The application of transformations to the canonical forms of controllability and observability allowed us to simplify the formulas of the spectral decompositions of the Gramians. In this paper, new spectral expansions in the form of Hadamard products for solutions to the algebraic and differential Sylvester equations of MIMO LTI systems are obtained, including spectral expansions of the finite and infinite cross - Gramians of continuous MIMO LTI systems. Recommendations on the use of the obtained results are given.
New possibilities of Gramian computation, by means of canonical transformations into diagonal, controllable, and observable canonical forms, are shown. Using such a technique, the Gramian matrices can be represented as products of the Hadamard matrices of multipliers and the matrices of the transformed right-hand sides of Lyapunov equations. It is shown that these multiplier matrices are invariant under various canonical transformations of linear continuous systems. The modal Lyapunov equations for continuous SISO LTI systems in diagonal form are obtained, and their new solutions based on Hadamard decomposition are proposed. New algorithms for the element-by-element computation of Gramian matrices for stable, continuous MIMO LTI systems are developed. New algorithms for the computation of controllability Gramians in the form of Xiao matrices are developed for continuous SISO LTI systems, given by the equations of state in the controllable and observable canonical forms. The application of transformations to the canonical forms of controllability and observability allowed us to simplify the formulas of the spectral decompositions of the Gramians. In this paper, new spectral expansions in the form of Hadamard products for solutions to the algebraic and differential Sylvester equations of MIMO LTI systems are obtained, including spectral expansions of the finite and infinite cross - Gramians of continuous MIMO LTI systems. Recommendations on the use of the obtained results are given.
The doubly-fed induction generator (DFIG) with virtual inertia control and reactive damping control gives a renewable energy generation system inertia and damping characteristics similar to those of a thermal power plant, and the parameters of the control strategy have a direct impact on the small-signal stability of the system. This paper firstly introduces the operating characteristics and control strategies of DFIG-based damping control and virtual inertia control, establishes a small-signal model of the control-based DFIG integrated interconnected system, and investigates the effects of virtual inertia and reactive damping values on the small-signal stability of the system; then, the maximum damping ratio of the interval oscillation mode in small disturbance analysis is taken as the optimization objective, and the control parameters are the optimization variables. An optimization method of inertia and damping parameters is established for improving the small disturbance stability of the system. The results show that the optimization procedure could improve the damping ratio of the interval oscillation mode while ensuring the system frequency. The effects of virtual inertia and reactive damping values on the small signal stability of the system are investigated, and an optimal allocation model and method for virtual inertia used to improve the small disturbance stability of the system is proposed.
Mapping the spatial distribution of nodal inertia is crucial for helping system operators identify locational frequency stability issues in the power system operation planning process. Currently, index-based methods cannot retrieve the nodal inertia values for all load buses. To do so, this paper proposes an accurate analytical formulation relying only on steady-state system parameters to determine the nodal inertia values and, thus, map the spatial distribution of system inertia. The performance and reproducibility of the proposed formulation are evaluated using three test systems: a 5-bus radial system with two synchronous generators, a multimachine IEEE 68-bus benchmark system, and a larger NPCC 140-bus test system. We validate the proposed spatial distribution of nodal inertia using time-domain simulations and numerical estimations. In addition, we compare our method against the inertia distribution indexes presented in the literature. The results indicate that our formulation adequately quantifies the nodal inertia value in system buses, with low computational cost, and providing a suitable tool for operation planning analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.