The revenue optimal mechanism for selling a single item to agents with independent but non-identically distributed values is complex for agents with linear utility (Myerson, 1981) and has no closed-form characterization for agents with non-linear utility (cf. Alaei et al., 2012). Nonetheless, for linear utility agents satisfying a natural regularity property, Alaei et al. (2018) showed that simply posting an anonymous price is an eapproximation. We give a parameterization of the regularity property that extends to agents with non-linear utility and show that the approximation bound of anonymous pricing for regular agents approximately extends to agents that satisfy this approximate regularity property. We apply this approximation framework to prove that anonymous pricing is a constant approximation to the revenue optimal single-item auction for agents with public-budget utility, private-budget utility, and (a special case of) riskaverse utility.