Abstract. In this paper we argue that maximum expected utility is a suitable framework for modeling a broad range of decision problems arising in pattern recognition and related fields. Examples include, among others, gaze planning and other active vision problems, active learning, sensor and actuator placement and coordination, intelligent humancomputer interfaces, and optimal control. Following this remark, we present a common inference and learning framework for attacking these problems. We demonstrate this approach on three examples: (i) active sensing with nonlinear, non-Gaussian, continuous models, (ii) optimal experimental design to discriminate among competing scientific models, and (iii) nonlinear optimal control.
The Principle of Maximum Expected Utility