We consider the singularly perturbed problem $$F_\varepsilon (u,\Omega ):=\int _\Omega \varepsilon |\nabla ^2u|^2 + \varepsilon ^{-1}|1-|\nabla u|^2|^2$$
F
ε
(
u
,
Ω
)
:
=
∫
Ω
ε
|
∇
2
u
|
2
+
ε
-
1
|
1
-
|
∇
u
|
2
|
2
on bounded domains $$\Omega \subset {\mathbb {R}}^2$$
Ω
⊂
R
2
. Under appropriate boundary conditions, we prove that if $$\Omega $$
Ω
is an ellipse, then the minimizers of $$F_\varepsilon (\cdot ,\Omega )$$
F
ε
(
·
,
Ω
)
converge to the viscosity solution of the eikonal equation $$|\nabla u|=1$$
|
∇
u
|
=
1
as $$\varepsilon \rightarrow 0$$
ε
→
0
.