With the huge growth of genomic data, exposing multiple heterogeneous features of genomic regions for millions of individuals, we increasingly need to support domain-specific query languages and knowledge extraction operations, capable of aggregating and comparing trillions of regions arbitrarily positioned on the human genome. While row-based models for regions can be effectively used as a basis for cloud-based implementations, in previous work we have shown that the array-based model is effective in supporting the class of regionpreserving operations, i.e. operations which do not create any new region but rather compose existing ones. In this paper, we remove the above constraint, and describe an array-based implementation which applies to unrestricted region operations, as required by the Genometric Query Language. Specifically, we define a wide spectrum of operations over datasets which are represented using arrays, and we show that the arraybased implementation scales well upon Spark, also thanks to a data representation which is effectively used for supporting machine learning. Our benchmark, which uses an independent, pre-existing collection of queries, shows that in many cases the novel array-based implementation significantly improves the performance of the row-based implementation.