The squared-field-derivative method for calculating eddy-current (proximity-effect) losses in round-wire or litz-wire transformer and inductor windings is derived. The method is capable of analyzing losses due to two-dimensional and three-dimensional field effects in multiple windings with arbitrary waveforms in each winding. It uses a simple set of numerical magnetostatic field calculations, which require orders of magnitude less computation time than numerical eddy-current solutions, to derive a frequency-independent matrix describing the transformer or inductor. This is combined with a second, independently calculated matrix, based on derivatives of winding currents, to compute total ac loss. Experiments confirm the accuracy of the method.Index Terms-Eddy currents, finite-element methods, inductors, magnetic devices, numerical field computation, power conversion, power transformers, proximity effect, skin effect.