2021
DOI: 10.21203/rs.3.rs-540763/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning

Abstract: Cardiovascular disorders, including atrial fibrillation (AF) and congestive heart failure (CHF), are the major causes of mortality worldwide. The diagnosis of cardiovascular disorders is heavily reliant on electrocardiogram (ECG) signals. Therefore, extracting significant features from ECG signals is the most challenging aspect to represent each condition of the ECG signals. Earlier studies have claimed that the Hjorth descriptor is assigned as a simple feature extraction algorithm that has the capability of c… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?