We consider different approaches for capacity enhancement of the network. In the first approach, using stochastic geometry we theoretically analyze time domain inter-cell interference coordination techniques in a two-tier HetNet and optimize the parameters to maximize the capacity of the network. In the second approach, we consider optimization of the locations of aerial bases stations carried by the unmanned aerial vehicles (UAVs) to enhance the capacity of the network for public safety and emergency communications, in case of damaged network infrastructure. In the third approach, we introduce a subsidization scheme for the service providers through which the network capacity can be improved by using regulatory power of the government. Finally, we consider the approach of device-todevice communications and multi-hop transmissions for enhancing the capacity of a network.v Velocity estimation of high speed mobile users is important for effective mobility management in densely deployed small cell networks. In this research, we introduce two novel methods for the velocity estimation of mobile users: handover-count based velocity estimation, and sojourn time based velocity estimation. Using the tools from stochastic geometry and estimation theory, we theoretically analyze the accuracy of the two velocity estimation methods through Cramer-Rao lower bounds (CRLBs).With the dense deployment of small cells, energy efficiency becomes crucial for the sustained operation of wireless networks. In this research, we jointly study the energy efficiency and the spectral efficiency in a two-tier HetNet. We optimize the parameters of inter-cell interference coordination technique and study the trade-offs between the energy efficiency and spectral efficiency of the HetNet.vi