This paper proposes a Dempster -Shafer theory based combining scheme for single-input single-output (SISO) systems with hybrid automatic retransmission request (HARQ), referred to as DSC, in which two methods for soft information calculations are developed for equiprobable (EP) and non-equiprobable (NEP) sources, respectively. One is based on the distance from the received signal to the decision candidate set consisting of adjacent constellation points when the source bits are equiprobable, and the corresponding DSC is regarded as DSC-D. The other is based on the posterior probability of the transmitted signals when the priori probability for the NEP source bits is available, and the corresponding DSC is regarded as DSC-APP. For the diverse EP and NEP source cases, both DSCD and DSC-APP are superior to maximal ratio combining, the so-called optimal combining scheme for SISO systems. Moreover, the robustness of the proposed DSC is illustrated by the simulations performed in Rayleigh channel and AWGN channel, respectively. The results show that the proposed DSC is insensitive to and especially applicable to the fading channels. In addition, a DS detection-aided bit-level DS combining scheme is proposed for multiple-input multiple-output-HARQ systems. The bit-level DS combining is deduced to be a universal scheme, and the traditional log-likelihood-ratio combining is a special case when the likelihood probability is used as bit-level soft information.Keywords: Basic probability assignment (BPA), Bit-level combining, Dempster -Shafer (D -S) evidence theory, Hybrid automatic retransmission request (HARQ), Multiple-input multiple-output (MIMO), Maximum-ratio combining (MRC)
I IntroductionA concern in packet data communication systems is how to control the transmission errors caused by the channel noise and interferences so that packets can be transmitted reliably. Automatic retransmission request (ARQ), as a fundamental approach, is intended to ensure an extremely low packet error rate. The efficiency of the system can be improved if the ARQ is combined with a forward-error-correcting (FEC) code, referred to as HARQ, which includes Chase combining [1] and incremental redundancy (IR) [2]. There are many HARQ strategies: including separating the HARQ process into HARQ sub-processes that operate over an isolated pairing of a transmitter and receiver antenna [3]; the constellation rearrangement technique [4] and the bit rearrangement scheme [5] that can provide a kind of diversity for performance improvement. In [4,5], authors developed effective HARQ strategies at the transmitter in order to improve the system reliability. Contrariwise, both [6,7] discussed combining algorithms at the receiver.Three linear combining schemes [8], selection combining (SC), equal-gain combining (EGC), and maximal ratio combining (MRC), entail various trade-offs between performance and complexity, and comparatively MRC is deemed to be superior to the others by outputting the maximum signal-to-noise (SNR) ratio in SISO systems. Jang e...