The objective of this study was to determine a simple and reliable ploidy identification protocol for the rainbow trout (RT), Oncorhynchus mykiss, in the field condition. To evaluate the ploidy level and compare different detection protocols, triploid RT and gynogenesis were induced by UV irradiation and/or heat shock. The hatching rate at day 30 was 85.2% and the survival rate at day 90 was 69.4% (fingerling). The sex ratio of female RT was 93.75% in the gynogenesis group, illustrating that the UV irradiation inactivated the sperm DNA. The hatching rate and survival rate were 82.0 and 74.7%, respectively, in the triploid-induced group. The triploid induction rate by heat shock procedure was 73.9%. Cytogenetic protocols for ploidy identification such as chromosome counting, erythrocyte nuclear size comparison, and analysis of nucleolar organizing regions (NORs) by silver staining were compared. Silver nitrate staining showed the greatest success rate (22/23 and 32/32 for the triploid-induced group and gynogenesis group, respectively), followed by erythrocyte nuclear size comparison (16/23 and 19/32 for the triploid-induced group and gynogenesis group, respectively) and, lastly, chromosome preparation (2/23 and 6/32 for the triploid-induced group and gynogenesis group, respectively) with the lowest success rate. Based on our findings, silver staining for RT ploidy identification is speculated to be highly applicable in a wide range of research conditions, due to its cost-effectiveness and simplicity compared to other numerous ploidy detection protocols.