“…𝑡, 𝑦 3 , 𝑣 3 ) + (𝑏 3 (𝑡)𝑦 3 , 𝑣 3 ) Ω + (𝑏 9 (𝑡)𝑦 2 , 𝑣 3 ) 𝛺 − (𝑏 6 (𝑡)𝑦 1 , 𝑣 3 ) Ω + (𝑏 15 (𝑡)𝑦 4 , 𝑣3 ) Ω ]𝜑 3 (𝑡)𝑑𝑡 = ∫ (𝑓 3 (𝑥, 𝑡, 𝑦 3 ), 𝑣 3 ) 𝛺 𝜑 3 (4 (𝑡, 𝑦 4 , 𝑣 4 ) + (𝑏 4 (𝑡)𝑦 4 , 𝑣 4 ) Ω − (𝑏 7 (𝑡)𝑦1 , 𝑣 4 ) 𝛺 + (𝑏 11 (𝑡)𝑦 2 , 𝑣 4 ) Ω − (𝑏 15 (𝑡)𝑦 3 , 𝑣 4 ) Ω ]𝜑 4 (𝑡)𝑑𝑡 = (84) ∫ (𝑓 4 (𝑥, 𝑡, 𝑦 4 ), 𝑣 4 ) 𝛺 𝜑 4 (𝑡)𝑑𝑡 𝑇 0 + ∫ (𝑢 4 , 𝑣 4 ) Г 𝜑 4 (𝑡)𝑑𝑡 𝑇 0 + (𝑦 4 (0), 𝑣 4 ) Ω 𝜑 4 (0)Now, one has the following two cases: Case1: Choose 𝜑 𝑟 ∈ 𝐷[0, 𝑇], i.e., 𝜑 𝑟 (𝑇) = 𝜑 𝑟 (0) = 0 ,∀𝑟 = 1,2,3,4, Now, by using integrating both sides for the first terms in the L.H.S. of ((80) -(83)), to get:∫ (𝑦 1𝑡 , 𝑣 1 ) 𝜑 1 (𝑡, 𝑦 1 , 𝑣 1 ) + (𝑏 1 (𝑡)𝑦 1 , 𝑣 1 ) Ω − (𝑏 5 (𝑡)𝑦 2 , 𝑣 1 ) Ω + (𝑏 6 (𝑡)𝑦 3 , 𝑣 1 ) Ω + (𝑏 7 (𝑡)𝑦 4 , 𝑣 1 ) Ω ]𝜑 1 (𝑡)𝑑𝑡 = ∫ (𝑓 1 (𝑥, 𝑡, 𝑦 1 ), 𝑣 1 ) Ω 𝜑 1 (𝑡)𝑑𝑡 𝑇 0 + ∫ (𝑢 1 , 𝑣 1 ) Γ 𝜑 1 (𝑡)𝑑𝑡 𝑇 0 𝑡, 𝑦 2 , 𝑣 2 ) + (𝑏 2 (𝑡)𝑦 2 , 𝑣 2 ) Ω + (𝑏 5 (𝑡)𝑦 1 , 𝑣 2 ) Ω − (𝑏 9 (𝑡)𝑦 3 , 𝑣 2 ) Ω − (𝑏 11 (𝑡)𝑦 4 , 𝑣 2 ) Ω ]𝜑 2 (𝑡)𝑑𝑡 = ∫ (𝑓 2 (𝑥, 𝑡, 𝑦 2 ), 𝑣 2 ) Ω 𝜑 2 (𝑡, 𝑦 3 , 𝑣 3 ) + (𝑏 3 (𝑡)𝑦 3 , 𝑣 3 ) Ω + (𝑏 9 (𝑡)𝑦 2 , 𝑣 3 ) Ω − (𝑏 6 (𝑡)𝑦 1 , 𝑣 3 ) Ω + (𝑏 15 (𝑡)𝑦 4 , 𝑣 3 ) Ω ]𝜑 3 (𝑡)𝑑𝑡 = ∫ (𝑓 3 (𝑥, 𝑡, 𝑦 3 ), 𝑣 3 ) Ω 𝜑 3 (𝑡)𝑡, 𝑦 4 , 𝑣 4 ) + (𝑏 4 (𝑡)𝑦 4 , 𝑣 4 ) Ω − (𝑏 7 (𝑡)𝑦 1 , 𝑣 4 ) Ω + (𝑏 11 (𝑡)𝑦 2 , 𝑣 4 ) Ω − (𝑏 15 (𝑡)𝑦 3 , 𝑣 4 ) Ω ]𝜑 4 (𝑡)𝑑𝑡 = ∫ (𝑓 4 (𝑥, 𝑡, 𝑦 4 ), 𝑣 4 ) Ω 𝜑 4 (the QSVS 𝑦 ⃗ = 𝑦 ⃗ 𝑢 ⃗ ⃗⃗ satisfy the WF ((8a)-(11a)).…”