Abstract-Most applications of evolutionary algorithms deal with static optimization problems. However, in recent years, there has been a growing interest in time-varying (dynamic) problems, which are typically found in real-world scenarios. One major challenge in this field is the design of realistic test-case generators (TCGs), which requires a systematic analysis of dynamic optimization tasks. So far, only a few TCGs have been suggested. Our investigation leads to the conclusion that these TCGs are not capable of generating realistic dynamic benchmark tests. The result of our research is the design of a new TCG capable of producing realistic nonstationary landscapes.