Backscatter communication networks have attracted much attention due to their small size and low power waste, but their spectrum resources are very limited and are often affected by link bursts. Channel prediction is a method to effectively utilize the spectrum resources and improve communication quality. Most channel prediction methods have failed to consider both spatial and frequency diversity. Meanwhile, there are still deficiencies in the existing channel detection methods in terms of overhead and hardware dependency. For the above reasons, we design a sequence-to-sequence channel prediction scheme. Our scheme is designed with three modules. The channel prediction module uses an encoder-decoder based deep learning model (EDChannel) to predict the sequence of channel indicator measurements. The channel detection module decides whether to perform a channel detection Article Title by a trigger that reflects the prediction effect. The channel selection module performs channel selection based on the channel coefficients of the prediction results. We use a commercial reader to collect data in a real environment, and build an EDChannel model based on the deep learning module of Tensorflow and Keras. As a result, we have implemented the channel prediction module and completed the overall channel selection process. The experimental results show that the EDChannel algorithm has higher prediction accuracy than ARIMA, linear regression (Linear), and autoregression (AR). The overall throughput of our scheme is improved by approximately 2.9% and 17.4% over random frequency hopping in both stable and unstable environments.