The optimal investment problem for defined contribution (DC) pension plans with partial information is the subject of this paper. The purpose of the return of premium clauses is to safeguard the rights of DC pension plan participants who pass away during accumulation. We assume that the market price of risk consists of observable and unobservable factors that follow the Ornstein-Uhlenbeck processes, and the pension fund managers estimate the unobservable component from known information through Bayesian learning. Considering maximizing the expected utility of fund wealth at the terminal time, optimal investment strategies and the corresponding value function are determined using the dynamical programming principle approach and the filtering technique. Additionally, fund managers forsake learning, which results in the presentation of suboptimal strategies and utility losses for comparative analysis. Lastly, numerical analyses are included to demonstrate the impact of model parameters on the optimal strategy.