To determine the patterns and influencing factors of the mechanical properties of millet stems from different varieties during the maturity period, this study employed a complete block experiment method and conducted shearing and bending tests on millet stems using the INSTRON5544 electronic universal material testing machine. The research investigated the variation in the shear strength, specific shear energy, bending strength, elastic modulus, and bending stiffness at different internode positions of the stems of Changza 466, Zhangza 16, and Jingu 21 during their maturity period. The results indicated that the variety had a significant impact on the mechanical properties of millet stems: from largest to smallest, the order of shear and bending forces was Jingu 21, Zhangza 16, and Changza 466. The shear strength and bending strength of Jingu 21 were the greatest among the three stem samples. The internode position significantly affected the shear mechanical properties of the millet stems, showing a general trend of decreasing shear strength with ascending internode position. The effect of the internode position on the bending stiffness was highly significant, whereas its impact on the bending strength and elastic modulus was not significant. The shear strength of the millet stems ranged from 3.866 ± 1.086 to 6.953 ± 2.208 MPa, significantly lower than the bending strength, which ranged from 18.934 ± 4.374 to 34.286 ± 6.875 MPa. The lowest shear strength and specific shearing energy, recorded at the fifth internode, were 4.028 ± 1.918 MPa and 15.097 ± 12.633 MJ/mm2, respectively. Jingu 21 and Changza 466 exhibit better lodging resistance than Zhangza 16. It is recommended to use a cutting-type platform for harvesting millet stems, with the cutting height set at the fifth internode position. This study provides a theoretical basis for the design of millet harvesting machinery and the selection of harvest parameters.