Abstract. For many applications in precision engineering, a six degrees of freedom (DoF) compliant stage (CS) with zero stiffness is desirable, to deal with problems like backlash, friction, lubrication, and at the same time, reduce the actuation force. To this end, the compliant stage (also known as compliant mechanism) can be statically balanced with a stiffness compensation mechanism, to compensate the energy stored in the compliant parts, resulting in a statically balanced compliant stage (SBCS). Statically balanced compliant stages can be a breakthrough in precision engineering. This paper presents an inventory of platforms suitable for the design of a 6 DoF compliant stage for precision engineering. A literature review on 3-6 DoF compliant stages, static balancing strategies and statically balanced compliant mechanisms (SBCMs) has been performed. A classification from the inventory has been made and followed up by discussion. An obviously superior architecture for a 6 DoF compliant stage was not found. All the 6 DoF stages are either non-statically balanced compliant structures or statically balanced non-compliant structures. The statically balanced non-compliant structures can be transformed into compliant structures using lumped compliance, while all SBCMs had distributed compliance. A 6 DoF SBCS is a great scope for improvements in precision engineering stages.