The idea of this paper comes from the need for a practical layout design for the subsea pipe line network and the power transmission network of offshore wind farms with subsea cables, which are both subsea transmission networks with line-shaped conduction structures. In this paper, this practical need is treated as an location-allocation problem, with the objective of minimizing the total cost, and a mixed-integer linear programming model (MILP) for layout optimization is developed. Through the model, the locations of service centers and theit corresponding sizes, the allocations between customers and service centers, as well as the transmission routes can all be figured out. This work makes two key contributions. First, facilities’ capacity restrictions and the avoidance of subsea obstacles are both integrated, making the description of the layout closer to practical situations. Secondly, a “global to local” search process based on the Delaunay triangulation method is constructed to solve the model, resulting in a high-quality solution. An offshore field layout design scenario is taken as a case study, through which the validity, feasibility, and stability of the proposed model, as well as the solution strategy, are presented. Furthermore, in the case study, the effect of the manifold number on the layout optimization is analyzed, indicating the flexibility of the model’s applications.