SUMMARYIn order to increase the reliability of surface acoustic wave (SAW) filters, a robust optimum design technique is presented. The frequency response characteristics of SAW filters are governed primarily by their geometrical structures, that is, the configurations of the interdigital transducers (IDTs) and reflectors fabricated on piezoelectric substrates. To choose desirable structures of SAW filters through computer simulation, conventional design techniques utilize the equivalent circuit model of the IDT. However, they have rarely considered the accuracy of the underlying model, which may be degraded by the dispersion of the circuit parameters. In this paper, considering the errors of these parameters, the robust optimum design of SAW filters is formulated as a constrained optimization problem. Then, a penalty function method combined with an improved variable neighborhood search is proposed and applied to the problem. Computational experiments conducted on a practical design problem of a resonator type SAW filter demonstrate the usefulness of the proposed method.