To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization framework based on expected point tolerance has been proposed in this paper. In the first stage, a single objective function is used for optimization control to obtain the expected point of the multiobjective optimization problem. Then, in the second stage, by defining the allowable deviation between each optimization objective and the expected point, the original multiobjective optimization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more reasonable and effective system optimization scheduling and also provide a new approach for solving multiobjective optimization problems.