Background
Recently, the occurrence of peri‐implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphologic changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces.
Methods
In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30 to 60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM), and energy dispersive X‐ray spectroscopy (EDS).
Results
Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not influence titanium microstructures. Compared with mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a noncontact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm2/pulse) and 20 Hz with water spray.
Conclusion
These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette.