2006
DOI: 10.1016/j.sigpro.2005.10.016
|View full text |Cite
|
Sign up to set email alerts
|

Optimal estimation of line segments in noisy lidar data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
4
0
8

Year Published

2006
2006
2018
2018

Publication Types

Select...
5
2

Relationship

2
5

Authors

Journals

citations
Cited by 8 publications
(12 citation statements)
references
References 11 publications
0
4
0
8
Order By: Relevance
“…Moveover, the model parameters can be identified on the basis of a single scan frame. This paper adds to the authors' examination of statistical errors on the estimation of straight lines in noisy lidar data [13].…”
Section: Discussionmentioning
confidence: 98%
See 1 more Smart Citation
“…Moveover, the model parameters can be identified on the basis of a single scan frame. This paper adds to the authors' examination of statistical errors on the estimation of straight lines in noisy lidar data [13].…”
Section: Discussionmentioning
confidence: 98%
“…The angle measurement is assumed to be noise-free while the measurement noise of the distance is modeled as independent Gaussian with standard deviation m. Details to the statistical examination can be found in [13].…”
Section: ) Comparison With Statistical Errorsmentioning
confidence: 99%
“…In industrial applications, there are a lot of noises in these images. If traditional edge detection methods are used to detect edges in all area of the images in our application, not only a lot of time caused by calculation would be needed but also the precision of the edge detection would be much worse since traditional edge detection methods usually have to select threshold which is much sensitive to noise [4,5] . Theoretical analysis and direct image vision prove there do be two bright stripes in an image though there are noises.…”
Section: Image Processing Of Cross Laser Imagesmentioning
confidence: 99%
“…Dies ist zum einen der einfache Least-Squares-Schätzer, welcher das Messrauschen jedoch nur unzureichend einbezieht. Zwei neuere Ansätze nach dem Maximum-Likelihood-Prinzip berücksichtigen zwar das Messrauschen in der radialen Komponente, nehmen einen Fehler in der Winkelemessung jedoch entweder nicht an [3], oder verwenden Abschätzungen für kleine Winkelfehler [5]. Der in dieser Arbeit vorgeschlagene Schätzer stellt eine Erweiterung des letztgenannten Verfahrens um eine Korrektur der Linearisierungsfehler dar.…”
unclassified