An invaluable method for probing the physics of a quantum many-body spin system is a mapping to noninteracting effective fermions. We find such mappings using only the frustration graph G of a Hamiltonian H, i.e., the network of anticommutation relations between the Pauli terms in H in a given basis. Specifically, when G is (even-hole, claw)-free, we construct an explicit free-fermion solution for H using only this structure of G, even when no Jordan-Wigner transformation exists. The solution method is generic in that it applies for any values of the couplings. This mapping generalizes both the classic Lieb-Schultz-Mattis solution of the XY model and an exact solution of a spin chain recently given by Fendley, dubbed "free fermions in disguise." Like Fendley's original example, the free-fermion operators that solve the model are generally highly nonlinear and nonlocal, but can nonetheless be found explicitly using a transfer operator defined in terms of the independent sets of G. The associated single-particle energies are calculated using the roots of the independence polynomial of G, which are guaranteed to be real by a result of Chudnovsky and Seymour. Furthermore, recognizing (even-hole, claw)-free graphs can be done in polynomial time, so recognizing when a spin model is solvable in this way is efficient. In a crucial step to proving our result, we additionally prove that there exists a hierarchy of commuting conserved charges for models whose frustration graphs are claw-free only, and hence these models are integrable. Finally, we give several example families of solvable and integrable models for which no Jordan-Wigner solution exists, and we give a detailed analysis of such a spin chain having 4-body couplings using this method.