We consider optimal intervention in the Elliott-Golub-Jackson network model [17] and show that it can be transformed into an influence maximization problem, interpreted as the reverse of a default cascade. Our analysis of the optimal intervention problem extends well-established targeting results to the economic network setting, which requires additional theoretical steps. We prove several results about optimal intervention: it is NP-hard and additionally hard to approximate to a constant factor in polynomial time.In turn, we show that randomizing failure thresholds leads to a version of the problem which is monotone submodular, for which existing powerful approximations in polynomial time can be applied. In addition to optimal intervention, we also show practical consequences of our analysis to other economic network problems: (1) it is computationally hard to calculate expected values in the economic network, and (2) influence maximization algorithms can enable efficient importance sampling and stress testing of large failure scenarios. We illustrate our results on a network of firms connected through input-output linkages inferred from the World Input Output Database.* We thank Sid Banerjee for helpful discussion. This paper is based on work supported by NSF CAREER award #1653354 and the Bloomberg Fellowship.