An asymmetric one-mode data matrix has rows and columns that correspond to the same set of objects. However, the roles of the objects frequently differ for the rows and the columns. For example, in a visual alphabetic confusion matrix from an experimental psychology study, both the rows and columns pertain to letters of the alphabet. Yet the rows correspond to the presented stimulus letter, whereas the columns refer to the letter provided as the response. Other examples abound in psychology, including applications related to interpersonal interactions (friendship, trust, information sharing) in social and developmental psychology, brand switching in consumer psychology, journal citation analysis in any discipline (including quantitative psychology), and free association tasks in any subarea of psychology. When seeking to establish a partition of the objects in such applications, it is overly restrictive to require the partitions of the row and column objects to be identical, or even the numbers of clusters for the row and column objects to be the same. This suggests the need for a biclustering approach that simultaneously establishes separate partitions of the row and column objects. We present and compare several approaches for the biclustering of one-mode matrices using data sets from the empirical literature. A suite of MATLAB m-files for implementing the procedures is provided as a Web supplement with this article.