This paper proposed an algorithm in which the maximum probability and the weighted average strategy were used for the combination of member classifiers. Using parallel computing, we test the algorithm on a China-Brazil Earth Resources Satellite (CBERS) image for land cover classification. The results show that using three computers in parallel can reduce the classification time by 30%, as compared with using only one computer with a dual core processor. The accuracy of the final image is 93.34%, and Kappa is 0.92. Multiple classifier combination can enhance the precision of the image classification, and parallel computing can increase the speed of calculation so that it becomes possible to process remote sensing images with high efficiency and accuracy.