2022
DOI: 10.1137/20m1384294
|View full text |Cite
|
Sign up to set email alerts
|

Optimal Local Approximation Spaces for Parabolic Problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 57 publications
0
5
0
Order By: Relevance
“…Proof. The first paragraph closely follows the proof of Proposition 3.1 in [47]. Since w satisfies equation (A.1) integration by parts in time yields t * s w t (t), v H 1 0 (D) ϕ(t) dt+ t * s (κ(t)∇w(t), ∇v) L 2 (D) ϕ(t) dt = 0 for all v ∈ H 1 0 (D) and ϕ ∈ C ∞ 0 ((s, t * )).…”
Section: Discussionmentioning
confidence: 92%
See 4 more Smart Citations
“…Proof. The first paragraph closely follows the proof of Proposition 3.1 in [47]. Since w satisfies equation (A.1) integration by parts in time yields t * s w t (t), v H 1 0 (D) ϕ(t) dt+ t * s (κ(t)∇w(t), ∇v) L 2 (D) ϕ(t) dt = 0 for all v ∈ H 1 0 (D) and ϕ ∈ C ∞ 0 ((s, t * )).…”
Section: Discussionmentioning
confidence: 92%
“…Here, •, • H 1 0 (D) denotes the duality pairing between H 1 0 (D) and H −1 (D). Thanks to the Hahn-Banach theorem we have that u ∈ W 1,2,2 (I, H 1 0 (D), H −1 (D)) := v ∈ L 2 (I, H 1 0 (D)) | v t ∈ L 2 (I, H −1 (D)) and u ∈ C 0 ( Ī, L 2 (D)) (see, for instance, [47]). We highlight that the embedding W 1,2,2 (I, H 1 0 (D), H −1 (D)) → C 0 ( Ī, L 2 (D)) is not compact unless additional regularity is assumed.…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations