Abstract:In this paper, the composite additive of CaF 2 /CaO was used to extract vanadium from stone coal, and the effect of roasting and leaching kinetics were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using the composite additive. The experimental results indicated that the roasted clinker can be obtained under the conditions of CaF 2 /CaO at a mass ratio of 2:3 and a total additive amount of 10 wt %, a roasting temperature 850 • C, and a roasting time of 90 min. The leaching rate of vanadium can reach 86.74%, which increased by 16.4% compared with that of blank roasting under the conditions including a leaching temperature of 950 • C, a sulfuric acid concentration of 15% (v/v), a leaching time of 2 h, and a ratio of liquid to solid of 3 mL/g. The phase transformation analysis indicated that the muscovite structure was effectively destroyed during the roasting process comparing with no additives, which provided the basis for vanadium dissociation. Roasting can promote the formation of calcium vanadate, which is beneficial to the leaching of vanadium. The vanadium leaching kinetic analysis indicated that the activation energy of the acid leaching reaction decreased from 42.50 KJ/mol in the blank roasting to 22.56 KJ/mol in the calcified roasting, and the reaction order, with respect to the sulfuric acid concentration, decreased from 1.15 to 0.85. Calcified roasting has a better mineral activation than blank roasting, which can accelerate the leaching of vanadium and reduce the dependence on high-temperature and high acid levels in the leaching process.