An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithmsboth steady-state and real-time -to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation's water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country's water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.