Tailored material is necessary in many industrial applications since material properties directly determine the characteristics of components. However, the conventional trial and error approach is costly and time-consuming. Therefore, materials informatics is expected to overcome these drawbacks. Here, we show a new materials informatics approach applying the Ising model for solving discrete combinatorial optimization problems. In this study, the composition of the composite, aimed at developing a heat sink with three necessary properties: high thermal dissipation, attachability to Si, and a low weight, is optimized. We formulate an energy function equation concerning three objective terms with regard to the thermal conductivity, thermal expansion and specific gravity, with the composition variable and two constrained terms with a quadratic unconstrained binary optimization style equivalent to the Ising model and calculated by a simulated annealing algorithm. The composite properties of the composition selected from ten constituents are verified by the empirical mixture rule of the composite. As a result, an optimized composition with high thermal conductivity, thermal expansion close to that of Si, and a low specific gravity is acquired.