Abstract. Let G be a connected reductive algebraic group over an algebraically closed field of characteristic p > 0, G 1 be the first Frobenius kernel, and G(F p ) be the corresponding finite Chevalley group. Let M be a rational G-module. In this paper we relate the support variety of M over the first Frobenius kernel with the support variety of M over the group algebra kG(F p ). This provides an answer to a question of Parshall. Applications of our new techniques are presented, which allow us to extend results of Alperin-Mason and Janiszczak-Jantzen, and to calculate the dimensions of support varieties for finite Chevalley groups.