Nowadays, most wireless communication systems employ coherent demodulation on the receiver side. Under this circumstance, part of the available transmission resource is reserved and utilized for channel estimation, referred to as pilot symbols. In recent standards, for example long-term evolution (LTE), a certain adjustment is allowed for the power radiated on the pilot symbols. This additional degree of freedom creates space for a further optimization of the system performance. In this article, we consider an orthogonal frequency division multiplexing system and investigate how to distribute the available power between data symbols and pilot symbols under transmissions over time-variant channels so that the overall throughput is maximized. We choose the post-equalization signal-to-interference and noise ratio as the cost function and solve the problem analytically. Simulation results obtained by the Vienna LTE simulator are consistent with the analytical results. With an optimal power distribution between data and pilot symbols, a throughput increase of around 10% can be achieved compared to a system with evenly distributed power between data and pilot symbols.