This paper presents a new planning approach based on voltage stability index (VSI) together with improved loss minimization (LM) formulations. The method has employed for application of distributed generation (DG) unit placement (location and size) in a loop (configured) test distribution network (LDN). Initially, VSI relationship for equivalent loop model has employed to find out potential locations for DG placement in LDN. Later, loss minimization formulations and loss minimization conditions (LMC) have been derived on the basis of an equivalent electrical model of LDN, for single and two DGs operating at various power factors, respectively. The proposed approach is comprised of two variants and has demonstrated on the 69-bus test distribution network. The first planning variant as a single case has applied for DG allocation (location, size, number) in LDN under normal load. Similarly, the second planning variant has demonstrated with three cases (six scenarios per case), evaluated under normal load and impact of load growth (across five years), respectively. The proposed approach has analyzed in terms of various performance indicators and results obtained have compared and found in close agreement with existed works in literature. Simulation results verify the validity of the proposed planning approach and establish that LDN performs better than radial distribution network from the perspective of load growth.