Motivated by the development of electric vehicles (EVs), this paper addresses the planning of EV charging infrastructures (EVCIs). Considering that the optimal locations for EVCIs in most cities with a tight land supply are difficult to obtain, it is significant to study the planning of EVCIs in such cities. This paper proposes a planning method and model of EVCIs under the condition that alternative locations of centralized charging infrastructures (CCIs) are known. Firstly, based on the principle of energy equivalence, the sales volume of the fuel of gas stations in the planned area is converted into the equivalent electric quantity (EEQ) and the EEQ is divided according to the demands of different EVs for charging. Then, an equal product of the load and distance (EPLD) criterion is used to distribute the EEQ to CCIs and distributed charging infrastructures (DCIs) located in areas for load forecasting. The final plan is given out after checking the constraints and planning rationality. In addition, the net present value (NPV), the average charging distance, and the total harmonic distortion (THD) rate are used to evaluate the planning scheme. Finally, the feasibility and practicability of the proposed method are verified by a case study in Beijing.