Scattering mechanism (SM) analysis is a promising technique for ship detection and classification in polarimetric SAR (PolSAR) images. In this paper, a four-component model-based decomposition method incorporating surface, double-bounce, volume and cross-polarized components is proposed for analyzing the SMs of ships. A novel cross-polarized scattering component capable of discriminating between the HV scattering power generated by the oriented scatterers on ships from that by volume scatterers is proposed as a means to address the problem of volume scattering power overestimation. In the decomposition stage, by taking into account both the real and imaginary parts of the elements [T] HV (1, 3) and [T] HV (2, 3) of the observed coherency matrix, the proposed cross-polarized component can preserve the reflection asymmetry information completely, which is an essential property of man-made targets, such as ships. Based on the proposed decomposition method and an analysis of the different SMs between ships and sea clutter, a novel ship detection metric defined as M = lnis proposed. Experimental results conducted on RadarSat-2 quad-polarimetric data validate the proposed four-component decomposition method as being more suitable for analyzing the SMs of ship targets than the existing helix matrix-based decomposition methods. Additionally, we find that the proposed ship detection metric can effectively enhance the signal-to-clutter ratio (SCR) and improve ship detection performance.