Leasing has proven to be a business model that is perfectly suited to the circular economy. It significantly contributes to sustainable development by enabling the reuse of machinery and equipment after each lease period and by including preventive maintenance and overhauls within and between lease terms. This helps to extend the life cycle of equipment, promote value recovery, and reduce waste. This paper examines an imperfect preventive maintenance (PM) strategy applied to equipment rented under the terms of “free leasing”. In free leasing, the lessor makes the equipment available to the customer for a specified period of time without charging rent. In return, the customer is required to purchase the equipment’s consumables exclusively from the lessor. The lessor is also responsible for the maintenance of the equipment at the customer’s premises. The greater the quantity of consumables used by the customer, the more the equipment will deteriorate. Consequently, the lessor must be able to determine the most effective approach to preventive maintenance, ensuring that it aligns with the customer’s planned usage rate while maximizing profit. This work proposes a PM strategy to be adopted by the lessor during the free lease period. This strategy involves the performance of imperfect PM actions just before the start of the lease period and then periodically. Different packages of preventive actions can be applied each time, with each package having a different cost depending on the level of effectiveness in terms of rejuvenating the equipment. Minimal repairs are performed in the event of equipment failure. The decision variables are the PM period to be adopted and the maintenance efficiency level to be chosen for each preventive intervention. The objective is to determine, for a given customer with an estimated consumption rate profile of consumables, the optimal values of these decision variables so that the lessor maximizes their profit. A mathematical model is developed to express the lessor’s average profit over each lease period. A solution procedure is developed for small instances of the problem, and an Artificial Bee Colony algorithm is implemented for larger instances. A numerical example and a sensitivity analysis are presented.