In this paper enhanced red-breasted sapsucker (ERBS) algorithm has been proposed to solve the power loss lessening problem. RBS algorithm is designed on the copulate actions of RBS. Male RBS (MRBS) will attract the female with an exclusive tone. Concerning the concentration of the tone female RBS (FMBS) will progress in the direction of the MRBS. Various tone engendered by MRBS will catch the fancy of FRBS, and this action is analogous to data contribution in Evolutionary techniques. Naturally, so many MRBS will put huge efforts simultaneously to attract the FRBS for copulate. RBS has been integrated with the sine-cosine algorithm (SCA) and opposition-based learning (OBL). SCA process shifts resourcefully from exploration to exploitation by acclimatizing the functions. Solutions are frequently streamlined to the premium solution and optimization of the premium region of the exploration zone. OBL is one of the significant optimization procedures to improve the convergence pace of different optimization procedures. The successful execution of the OBL holds the assessment of the opposite population and present population in the analogous generation to find out the better contender solution. The proposed enhanced RBS (ERBS) algorithm is corroborated in IEEE 30 bus test systems. Power discrepancy compressed, power reliability amplified, and power loss condensed.