Purpose
Despite South Africa’s ailing electrical grid, substantial renewable energy (RE) integration is planned for the country. As grid-integrated RE affects all grids differently, this study aims to develop an adaptable grid code-guided renewable power plant (RPP) control real-time simulation testbed, tailored to South African grid code requirements to study grid-integrated RE’s behaviour concerning South Africa’s unique conditions.
Design/methodology/approach
The testbed is designed using MATLAB’s Simulink and live script environments, to create an adaptable model where grid, RPP and RPP guiding grid codes are tailorable. This model is integrated with OPAL-RT’s RT-LAB and brought to real-time simulation using OPAL-RT’s OP4510 simulator. Voltage, frequency and short-circuit event case studies are performed through which the testbed’s abilities and performance are assessed.
Findings
Case study results show the following. The testbed accurately represents grid code voltage and frequency requirements. RPP point of connection (POC) conditions are consistently recognized and tracked, according to which the testbed then operates simulated RPPs, validating its design. Short-circuit event simulations show the simulated wind farm supports POC conditions relative to short-circuit intensity by curtailing active power in favour of reactive power, in line with local grid code requirements.
Originality/value
To the best of the authors’ knowledge, this is the first design of an adaptable grid code-guided RPP control testbed, tailored to South African grid code requirements in line with which RPP behavioural and grid integration studies can be performed.