The continuous variation and dispersion of the load demand during a 24-h day are uncontrolled aspects that affect the efficiency, operational conditions, and total cost of the power distribution network. The cost of the network is strongly related to the peak of demand, but the available capacity of the network is not used efficiently during the day because feeders and branches usually work under 70% of their full capacity. In this way, it is necessary to measure how efficiently the distribution network capacity is used and to identify the aspects that can be modified to improve it. This article proposes a new exploitation capacity index to measure the efficiency of a/the whole distribution network throughout the day in relation to the total available capacity of the branches that compose the network. The paper presents the mathematical formulation and the validation process of the index, and then it provides a planning case study in which the index and the total cost of the planning problem are calculated and compared in four different scenarios in which the peak of the load demand changes. The results show a direct relation between the exploitation capacity and the peak of demand, so lower exploitation capacities are strongly related to higher peaks of demand. As for the capital investments for the network planning, it is found that higher peaks of demand involve more upgrade necessities and higher capital investments compared to the other cases.