We propose a general approach to implement nonadiabatic geometric single-and two-qubit gates beyond the rotating wave approximation (RWA). This protocol is compatible with most optimal control methods used in previous RWA protocols; thus, it is as robust as (or even more robust than) the RWA protocols. Using counter-rotating effects allows us to apply strong drives. Therefore, we can improve the gate speed by 5-10 times compared to the RWA counterpart for implementing highfidelity (≥ 99.99%) gates. Such an ultrafast evolution (nanoseconds, even picoseconds) significantly reduces the influence of decoherence (e.g., the qubit dissipation and dephasing). Moreover, because the counter-rotating effects no longer induce a gate infidelity (in both the weak and strong driving regimes), we can achieve a higher fidelity compared to the RWA protocols. Therefore, in the presence of decoherence, one can implement ultrafast geometric quantum gates with ≥ 99% fidelities.