Performance assessment is critical in today's competitive environments, where companies need to establish trade-offs between key competitive dimensions. The complexity of these environments calls for new approaches to performance assessment. Thus, in this work, we propose a novel conceptual framework for performance assessment in manufacturing environments combining different production strategies. Focus is laid on MTO/ETO combined environments and a threestage problem analysis is considered. Firstly, a hybrid SD-DES-ABS model approach addresses the needs of a system that handles different types of orders, processes and workforce allocation requirements; secondly, the model results for different demand scenarios are assessed using a one-way ANOVA analysis followed by a Tukey-Kramer's test, with pairwise comparisons for assessment of significant performance variations under different system operating policies. A full factorial Design of Experiments (DOE) analysis follows, for determining the relevant process parameters influencing the system performance. As an example of application of the proposed framework, we consider the case of an advanced manufacturing company, whose manufacturing environment encompasses combined MTO/ETO production strategies.