This paper presents an advanced Wireless Power Transfer (WPT) system for electric vehicles (EVs) featuring Active Load Impedance Matching (ALIM) at the rectification stage. Unlike traditional synchronous rectification, ALIM dynamically adjusts load impedance, optimizing energy transfer efficiency and reducing thermal stresses, system costs, and mass. The system incorporates two circuits optimized for distinct frequency bands: one operates below 10 kHz using standard copper wiring for cost-effectiveness, and the other at 85 kHz, which significantly reduces the mass of the onboard coil and magnetic circuit while ensuring interoperability according to SAE J2954 standard. Our approach enhances charging efficiency across various operating conditions, improves thermal management, and minimizes maintenance costs. Additionally, it enables partial compensation for vehicle misalignment and ground assembly impedance, further boosting efficiency and interoperability. Experimental results demonstrate a notable increase in efficiency and reduction in system mass, confirming the superiority of the ALIM-equipped WPT system over conventional solutions. This paper underscores the potential of ALIM to advance the scalability, efficiency, and economic viability of wireless EV charging technology, promoting broader adoption and sustainability in EV infrastructures. By providing a comprehensive solution that addresses key challenges in wireless charging, our work paves the way for more efficient and cost-effective EV charging systems.