The optimization problem with a single objective can obtain a single solution, called an optimal solution. It maximizes or minimizes the performance of a particular objective function to a given constraint. But, in the case of the multi-objective optimization, different objectives can be simultaneously optimized. Thus, this paper recommends a multi-objective optimization methodology for simultaneously perform the two objective functions such as resizing and optimal placement of Distributed Static Compensator (DSTATCOM) for reducing the power loss, total cost and enhancing the voltage profile. For these purposes, an integrated approach of two optimization algorithm called Multi-objective Ant Colony Optimization (MACO) and Bacterial Foraging Optimization Algorithm (BFOA) are used. The prime intention of this work is to bring down the power loss, total cost and enhance the voltage profile by placing the DSTATCOM device in an optimal location. Here, IEEE-30 and IEEE-69 bus systems are considered to appraise the recital of the recommended approach. Moreover, the effectiveness of the MACO-BFOA approach is evaluated and compared with other multi-objective algorithms. From this analysis, it is observed that when compared to these techniques, the proposed system provides the minimized power loss and total cost.