The anticipated use of elastic membranes for deflection-based rain gauges has provided an impetus for this paper to revisit the large deflection problem of a peripherally fixed circular membrane subjected to liquid weight loading, a statics problem when the fluid–structure interaction of membrane and liquid reaches static equilibrium. The closed-form solution of this statics problem of fluid–structure interaction is necessary for the design of such membrane deflection-based rain gauges, while the existing closed-form solution, due to the use of the small rotation angle assumption of the membrane, cannot meet the design requirements for computational accuracy. In this paper, the problem under consideration is reformulated by giving up the small rotation angle assumption, which gives rise to a new and somewhat intractable nonlinear integro-differential equation of the governing out-of-plane equilibrium. The power series method has played an irreplaceable role in analytically solving membrane equations involving both integral and differential operations, and a new and more refined closed-form solution without the small rotation angle assumption is finally presented. Numerical examples conducted show that the new and more refined closed-form solution presented has satisfactory convergence, and the effect of giving up the small rotation angle assumption is also investigated numerically. The application of the closed-form solution presented in designing such membrane deflection-based rain gauges is illustrated, and the reliability of the new and more refined closed-form solution presented was confirmed by conducting a confirmatory experiment.