2015
DOI: 10.1016/j.jeconom.2015.03.014
|View full text |Cite
|
Sign up to set email alerts
|

Optimal smoothing in nonparametric conditional quantile derivative function estimation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 38 publications
0
7
0
1
Order By: Relevance
“…Untuk mengatasi masalah tersebut, maka dikembangkanlah metode regresi quantil. Regresi quantil pertama kali diperkenalkan oleh Koenker dan Basset (1978), Metode ini merupakan perluasan dari model regresi pada quantil bersyarat [12]. Untuk mendapatkan estimasi parameter model regresi quantil diperoleh dengan menggunakan metode pemorograman linier diantarnya algoritma simpleks, interior-point, dan smoothing [11].…”
Section: Y Matdoan B W Otok R M Atokunclassified
“…Untuk mengatasi masalah tersebut, maka dikembangkanlah metode regresi quantil. Regresi quantil pertama kali diperkenalkan oleh Koenker dan Basset (1978), Metode ini merupakan perluasan dari model regresi pada quantil bersyarat [12]. Untuk mendapatkan estimasi parameter model regresi quantil diperoleh dengan menggunakan metode pemorograman linier diantarnya algoritma simpleks, interior-point, dan smoothing [11].…”
Section: Y Matdoan B W Otok R M Atokunclassified
“…In the context of the local linear LS, Henderson et al (2015) considered a method of bandwidth selection based on cross-validation for gradient estimation. After that this method is extended to the framework of the local linear QR by Lin et al (2015). Their methods are to select the optimal bandwidth for the gradient estimation based on the local linear approximation which is easy to give a large bias in many situations.…”
Section: Bandwidth Selectionmentioning
confidence: 99%
“…Through the local least squares regression, Henderson et al (2015) put forward a minimum cross-validation approach for choosing bandwidth of gradient estimation. Whereafter, this work is further promoted by Lin et al (2015) to discuss the selection of bandwidth for quantile derivative estimation. Kai et al (2010) suggested a short cut strategy using the relationship of optimal bandwidths between the least squares regression and the composite quantile regression.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Using nonparametric techniques to estimate econometric models has received increasing attention among econometricians in recent decades (see, for example, Pagan and Ullah (1999); Hall et al (2007); Belloni et al (2016); Lin et al (2015); Li et al (2013); Firpo et al (2009) and Firpo et al (2018) for the literature of nonparametric methods and applications). The most popular nonparametric model is the conditional mean regression model.…”
Section: Introductionmentioning
confidence: 99%