Energy hub systems integrate various energy sources and interconnect different energy carriers in order to enhance the flexibility of the system. In this paper, a cooperative framework is proposed in which a network of energy hubs collaborate together and share their resources in order to reduce their costs. Each hub has several sources including CHP, boiler, renewable sources, electrical chiller, and absorption chiller. Moreover, energy storages are considered for electrical, heating, and cooling systems in order to increase the flexibility of energy hubs. Unlike the methods based on Nash-equilibrium points, which find the equilibrium point and have no guarantee for optimality of the solution, the employed cooperative method finds the optimal solution for the problem. We utilize the Shapley value to allocate the overall gain of the hub's coalition based on the contribution and efficiency of the energy hubs. The proposed method is modeled as a mixed integer linear programming problem, and the cost of network energy hubs are decreased in the cooperative operation, which shows the efficiency of this model. The results show 18.89, 10.23, and 8.72% improvement for hub1, hub2, and hub3, respectively, by using the fair revenue mechanism.