“…It then follows from V 0 (x, d) = Y 0 γ 0 (d − γ 0 x) 2 − d 2 2γ 0 and Theorem 2.1 that β (γX * − D * ) + D * = 0 D M -a.e.,(73)where D * = (D * s ) s∈[0,T ] denotes the associated to X * deviation process (see(9)). This yields for the processA * = (A * s ) s∈[0,T ] defined by A * s = X * s − α s D * s , s ∈ [0, T ], that dA * s = dX * s − D * s dα s − α s dD * s − d[α, D * ] s = −D * s dα s + α s ρ s D * s d[M ] s = β s A * s dα s α s − ρ s d[M ] s , s ∈ [0, T ],f denotes driver(14) of BSDE(13):Y t = Y 0 − ⊥,(1) − M ⊥,(2) t = M ⊥,(1) − M ⊥,(2) , s − Z(1) s d M ⊥,(1) − M ⊥,(2) , M s = 0, t ∈ [0, T ].…”