2021
DOI: 10.48550/arxiv.2104.13707
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Optimal Transport between Gaussian random fields

Abstract: We consider the optimal transport problem between zero mean Gaussian stationary random fields both in the aperiodic and periodic case. We show that the solution corresponds to a weighted Hellinger distance between the multivariate and multidimensional power spectral densities of the random fields. Then, we show that such a distance defines a geodesic, which depends on the weight function, on the manifold of the multivariate and multidimensional power spectral densities.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?