Cognitive radio (CR) is a wireless technology for increasing the bandwidth usage. Spectrum sensing (SS) is the first step in CR. There are three basic techniques in SS, energy detection (ED), matched filter (MF), and cyclostationary detection (CFD). These techniques have many challenges in performance detection (Pd) and computational complexity (CC). In this paper, we propose a hybrid sensing method that consists of MF and CFD to exploit their merits and overcome their challenges. The proposed method aims to improve Pd and reduce CC. When MF hasn’t had enough information about PU, it switches to CFD with a reduction of CC in both MF and CFD. The proposed method is simulated under fading with cooperative and non-cooperative scenarios, measured using Pd and CC ratio Cratio, and evaluated by comparing it with traditional and hybrid methods in the literature. The simulation results show that the proposed method outperforms other methods in Pd and Cratio. For example, at Eb/No equal to 0 dB under the Rayleigh fading channel, the Pd in the proposed method increased by 38 %, 28 %, 28 %, and 18 % as compared with the modified hybrid method, traditional hybrid method, traditional CFD method, and traditional MF method in the literature, respectively.